SFI Presentation

Looks similar, but exactly different!! Save and Safe from SFI

SFI Electronics Technology Inc.

1. SFI Company Profile 2. Products 3. Advantages

SFI Electronics Technology Inc. Page 2

Company Profile

Company SFI Electronics Technology Inc.

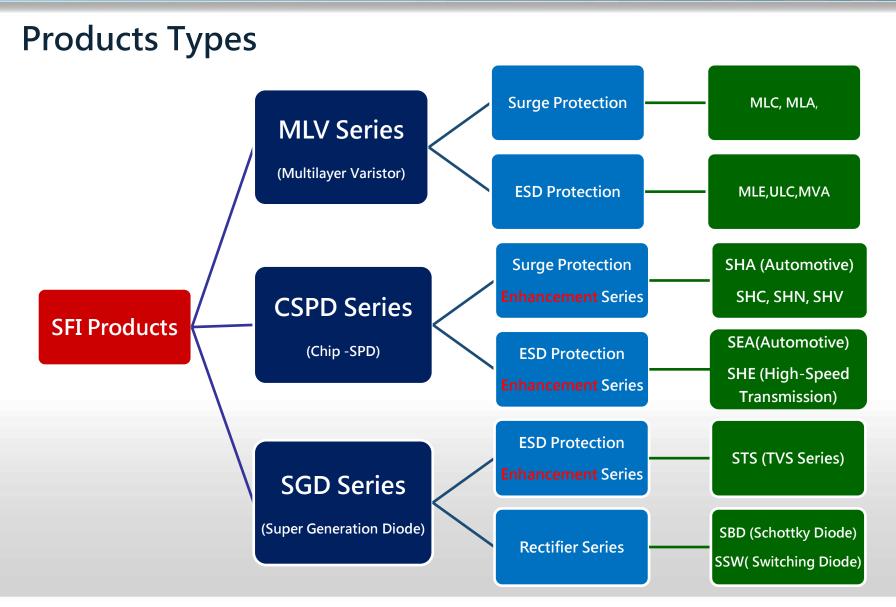
Products Overvoltage Protection Components

Marketing Direct Sales, Indirect Sales (Agents)

Establishment 1999

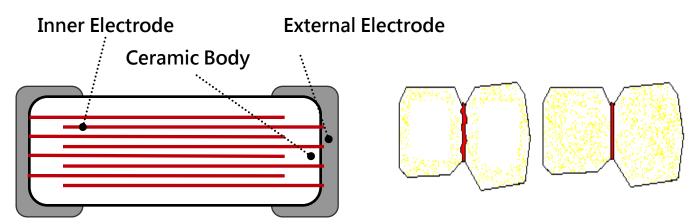
Headquarter Taoyuan, Taiwan

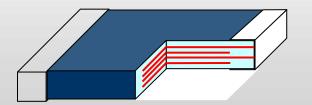
Branch OfficesShenzhen/ Shanghai /
/Changchun/Wuhan/ChangzhouEmployee150


Certificates ISO9001, TS16949, ISO14001

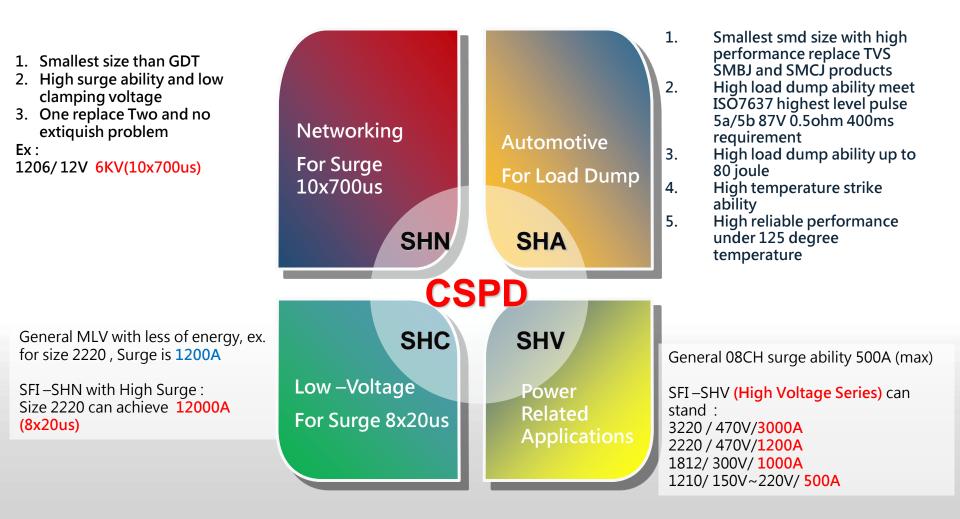
Factory Location Taoyuan (2 Plants)

Main Market Global Market





Multilayers Construction


Features:

- The nano technology makes the function of various resistance more better.
- To add elements of PTC, it makes the operation temperature more high.
- Grain size distribution at grain boundary

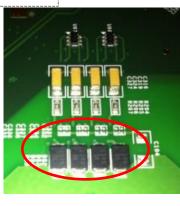
Non-linear coefficient of ceramic comes from double Schottky barriers between two ZnO grain boundaries. And during the sintering process, the ZnO grain become semiconducting and form solid bonding between ZnO grain and grain boundary segregation.

Innovation development and technology in CSPD Series

- 1. Small size advantage
- 2. Surface Mount Design (SMD type) (replacement with DIP type)

High reliable performance products characteristic

OR


- 1. Meet AECQ200 request
- 2. Meet 125 high temperature reliable performance
- 3. High products characteristic more than competitor

2. Dual Function (one replacement two parts)

Traditional Design:

or

SHV

Power Related Applications SFI MLV solution of SMD varistor with displaced electrodes - 08CH/SHV

- 1. High Technology and we design smaller size 1210 type
- 2 All internal electrodes to be surrounded by ceramics
- 3. Surface of the whole chip is passivated and Ni-barrier end terminations with excellent solderability
- 4. High reliable performance in high temperature and humidity reliable

The other solution disadvantages

- Ag end terminations are being oxidised or covered with AgS in time, so that solderability gets worse with stocking time
- Plastic cover and not good reliable in humidity and high temperature test
- Lateral sides of such solution are not passivated. In case activated flux is used for soldering, wetting of later sides can occur resulting in increase of leakage current, which present one of the failure mechanisms.

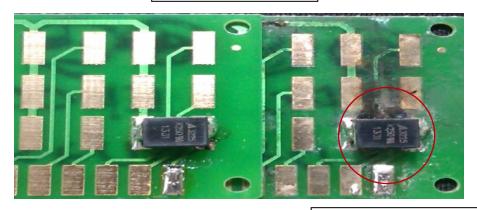
	SFI	Littelfuse	EPCOS	Panasonic	Maida	Thinking
Displaced electrodes		Х			X	
Plastic Housing			Х	Х		Х
SIZE						
1210	Х					
1812	Х					
2220	Х					
3225	Х		X	Х		X
4532			Х			X

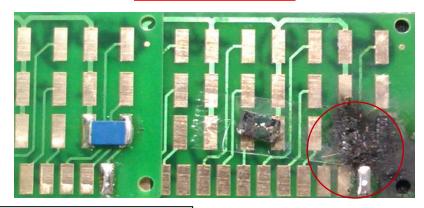
Only SFI technology is available in 1210/1812/2220 size Save pcb board spec.

SHV High surge ability test

#	Brand	ITEM	BDV	Surge	Times	BDV V	Change	Result (change
	Brana			ability		v		<10%)
1	Exxxx	3225K250G2	395V	400A	1	397	0.5%	PASS
			395V	400A	3	399	1%	PASS
			395V	400A	5	327	-17.2%	FAIL
2	SFI	2220SV391-501A	397V	400A	5	400	0.7%	PASS
			397V	400A	20	402	+1.2%	PASS
			397V	400A	50	403	+1.5%	PASS
1	Lxxxxxxxx	V430CH8	439V	200A	20	393	-10.4%	FAIL
			436V	400A	9	390	-10.5%	FAIL
2	SFI	1812SV431-501A	426V	200A	200	426	0%	PASS
-			431V	400A	50	437	+1.4%	PASS
			425V	500A	20	430	+1.2%	PASS

SFI have high surge ability. 5~10 times strike withstand ability

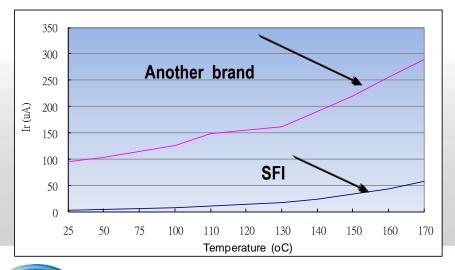

	SFI	Exxxx	Lxxxxx
Туре	Mutilayer	plastic encapsulated	with displaced electrodes
Material	Ceramic	assembling of silvered disc varistor of size φ = 5 or 7 mm into plastic housing	Ag electrodes on the surface of the plates, each of them was connected with only one of the Ag end terminations. Bottom and upper side were then passivated with glass lacquer.
High temperature ability	Excellent	maximum is 85℃(Not good)	NOT GOOD
Surge condition	Excellent	Derating	Derating
Humidity ability	Excellent	NOT good	NOT good
End termination (electrode)	Nickle Barrier	tinned copper	Ag/pt
Solderability	Excellent	NOT Good	Not good

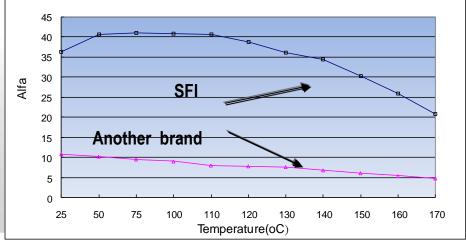


SHV reliable test – High temperature 85°C & 40°C 95%RH humidity load test

E brand

L brand


Fail and burn



CSPD-SHV series-High product performance Technology

	SF	<u>ا</u> آ	_		Another Br	and(EPXX	X)	
Temp. (℃)	Breakdown Voltage(V)	α	Leakage Current(uA)	Temp. (℃)	Breakdown Voltage(V)	α	Leakage Current(uA)	
25	26.29	36.29	3.1	25	24.8	10.8	95	Ĩ
50	26.53	40.7	3.7	50	24.3	10.2	103	
75	26.58	41.05	5.2	75	24.2	9.5	114	
100	26.67	40.91	7.5	100	24.1	9	125	
110	26.77	40.56	10.6	110	23.8	8	149	
120	26.78	38.75	13.2	120	23.8	7.8	155	
130	26.85	36.19	17.4	130	23.7	7.6	161	
140	26.88	34.41	23.5	140	23.3	6.8	191	
150	26.93	30.28	33.3	150	22.9	6.1	220	
160	26.96	25.94	43.7	160	22.3	5.4	256	
170	26.96	20.83	<u>57.8</u>	170	21.7	4.8	289	
	(°C) 25 50 75 100 110 120 130 130 140 150 160	Temp. (℃)Breakdown Voltage(V)2526.295026.537526.5810026.6711026.7712026.7813026.8514026.8815026.9316026.96	C)Voltage(V)α2526.2936.295026.5340.77526.5841.0510026.6740.9111026.7740.5612026.7838.7513026.8536.1914026.8834.4115026.9330.2816026.9625.94	Temp. (°C)Breakdown Voltage(V)αLeakage Current(uA)2526.2936.293.15026.5340.73.77526.5841.055.210026.6740.917.511026.7740.5610.612026.7838.7513.213026.8536.1917.414026.8834.4123.515026.9330.2833.316026.9625.9443.7	Temp. (°C)Breakdown Voltage(V)αLeakage Current(uA)Temp. (°C)2526.2936.293.1255026.5340.73.7507526.5841.055.27510026.6740.917.510011026.7740.5610.611012026.7838.7513.212013026.8536.1917.413014026.8834.4123.514015026.9330.2833.315016026.9625.9443.7160	Temp. (°C)Breakdown Voltage(V)αLeakage Current(uA)Temp. (°C)Breakdown Voltage(V)2526.2936.293.12524.85026.5340.73.75024.37526.5841.055.27524.210026.6740.917.510024.111026.7740.5610.611023.812026.7838.7513.212023.813026.8536.1917.413023.714026.8834.4123.514023.315026.9330.2833.315022.916026.9625.9443.716022.3	Temp. (°C)Breakdown Voltage(V)αLeakage Current(uA)Temp. (°C)Breakdown Voltage(V)α2526.2936.293.12524.810.85026.5340.73.75024.310.27526.5841.055.27524.29.510026.6740.917.510024.1911026.7740.5610.611023.8812026.7838.7513.212023.87.813026.8536.1917.413023.77.614026.8834.4123.514023.36.815026.9330.2833.315022.96.116026.9625.9443.716022.35.4	Temp. (°C)Breakdown Voltage(V)αLeakage Current(uA)Temp. (°C)Breakdown Voltage(V)αLeakage Current(uA)2526.2936.293.12524.810.8955026.5340.73.75024.310.21037526.5841.055.27524.29.511410026.6740.917.510024.1912511026.7740.5610.611023.8814912026.7838.7513.212023.87.815513026.8536.1917.413023.77.616114026.8834.4123.514023.36.819115026.9330.2833.315022.96.122016026.9625.9443.716022.35.4256

CSPD-SHV series-High product performance Technology

1206SA360-090J (New SHT)					
Temp.	Breakdown	~	Leakage		
(°C)	Voltage(V)	α	Current(uA)		
25	33.1	43	0.3		
85	33.1	44	0.6		
125	33.2	42.3	1.6		
150	33.2	38.6	3.4		

1206SA360-090J (General)

Temp. (℃)	Breakdown Voltage(V)	α	Leakage Current(uA)
25	46.2	38.5	2.4
85	46	29.4	19
125	45.7	20.2	48
150	45.3	13.9	77

2220SA240-500J (General)

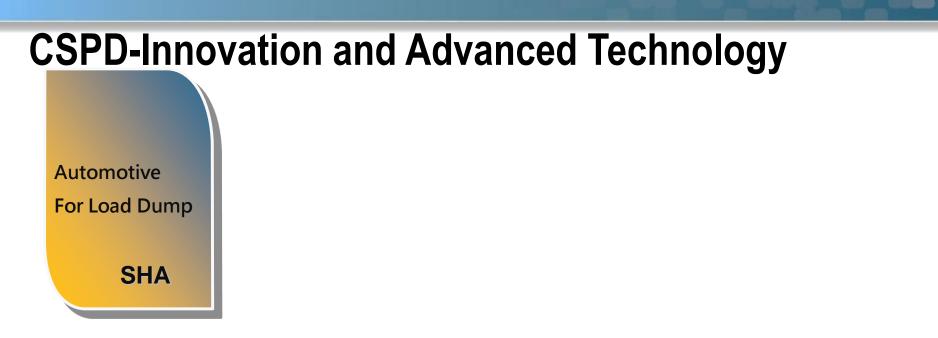
Temp. (℃)	Breakdown Voltage(V)	α	Leakage Current(uA)
25	35.3	35.8	1.4
85	35.6	40	1.6
125	36	41.7	3.9
150	36.5	39	8.5

2220SA240-500J (New SHT)

Temp. (℃)	Breakdown Voltage(V)	α	Leakage Current(uA)
25	28.7	40.2	4.4
85	28.6	33.5	13
125	28.4	21.3	37
150	28	12.7	75

All meet Standard<200uA

New SHT have High performance in high temperature ability


0805SA240-060J (New SHT)

Temp. (℃)	Breakdown Voltage(V)	α	Leakage Current(uA)
25	31.9	29.3	0.5
85	31.8	33	0.6
125	32	31.3	1.3
150	32	30.5	2.4

- -Small size for application requirement
- --High temperature sensitivity level for LED application
- --Moisture sensitivity level for ceramic material
- -High electronics characteristic and product performance
- -Plating material for good solderability
- -Lifetime / Long-term reliability

Looks similar, but exactly different!! Sfl products superb performance is your best choice. Save and Safe in SFI products

- 1. Smallest smd size with high performance replace TVS SMBJ and SMCJ products
- High load dump ability meet ISO7637 highest level pulse 5a/5b 87V
 0.5ohm 400ms requirement
- 3. High load dump ability up to 80 joule smd size
- 4. High temperature strike ability
- 5. High reliable performance under 125 degree temperature

SHA-(1) Smallest Size with high performance

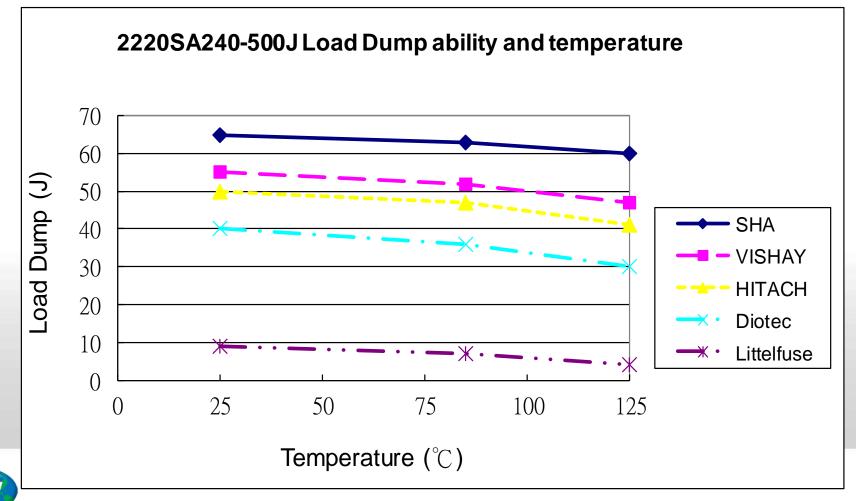
(2) High load dump ability up to 80 joule (competitor only 25 joule)

SHA-(3) High Load dump ability meet ISO7637-2 pulse 5a request

Ex. Item: SFI 2220SA240-250J vs KEC Z5W27V

Result

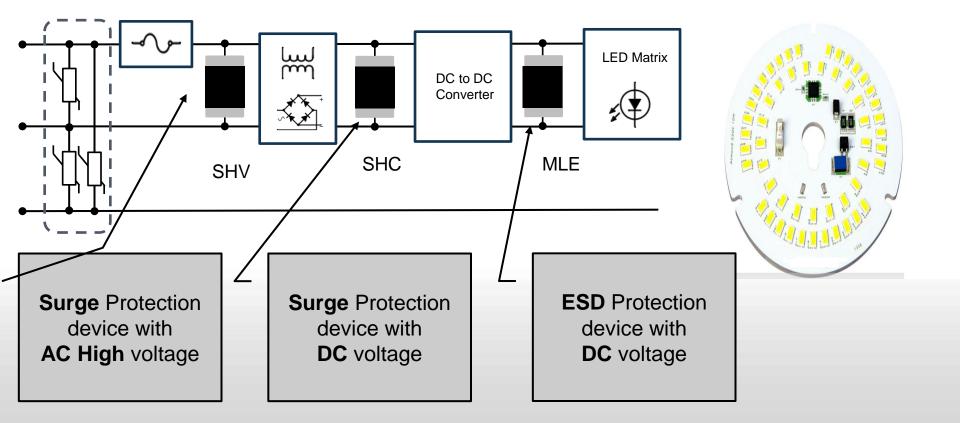
#	Item	LOAD DUMP ability	Times	Result	Result
1	KEC	87V / 0.5Ω / 400ms (50J)	2 TIMES	Fail	NOT GOOD and
	Z5W27V	80V / 0.5Ω / 400ms (50J)	4 TIMES	FAIL	derating and
		70V / 0.5Ω / 400ms (30J)	10 TIMES	PASS	fail after several
					times strike
2	SFI	87V / 0.5Ω / 400ms (50J)	10 TIMES	PASS	SHA have good
	SFI2220SA240-500J				heat ability and
3	SFI	65V / 0.5Ω / 400ms (25J)	10 TIMES	PASS	could withstand
	SFI2220SA240-250J				several times


SFI can pass ISO7637-2 Pulse 5a strictly condition (87V, 0.5ohm, 400ms)10 times, but KEC Z5W27V can't pass this request.
 SFI2220SA240-500J have good heat ability, for more times strike and could meet Load Dump ability.

CSPD-Innovation and Advanced Technology SHA-(4) High reliable performance under 125 degree

After high Temperature, SFI still maintains in stable energy joule

 \rightarrow good for customer the good reliable performance


High product performance Technology

	SFI	Others
1. Size	SMD	Disc and big
2. High Current	12000A	1200A
3. High Voltage	470V	Dip type
4. High Temperature ability	125 degree	85 degree
5. High Load Dump ability	80 Joule	25 Joule
6. Low leakage (before reliable test)	Under 10uA	Under 50uA
7. Low leakage (after reliable test)	Under 50uA	Under 200uA
8. Low clamping voltage (similar TVS function)	6V	20V
9. Dual function	One	Need two device

Best products performance and reliable to save cost and upgrade your product value and different in the market

SFI SHV Application for AC LED protection

SFI values and advantages for you

- Small package to save space- SMD package(0805~3220)
- High Temperature withstands up to 125 $^\circ\!\mathrm{C}$
- High Surge Energy (3220 size can reach 12000A)
- From low voltage to high voltage (12V~470V)
- Stable reliability
- Non-flammable package
- Meet AECQ200; Comply with RoHS, Lead Free and REACH

"Your support is our best driver" Thanks for your time !!

Thank You !

Here comes your footer
Page 24